大功率半导体激光光源光束整形技术研究

彭航宇^{1,2} 顾媛媛^{1,2} 单肖楠¹ 刘 云¹ 郝明明^{1,2} 朱洪波^{1,2} 尹红贺¹ 田振华^{1,2} 秦 莉¹ 宁永强¹ 王立军¹ 中国科学院长春光学精密机械与物理研究所激发态物理重点实验室,吉林长春 130033 ²中国科学院研究生院,北京 100049)

摘要 光束质量是半导体激光器应用的最大瓶颈,但是可以利用光束整形技术加以改善。随着半导体激光合束技术的发展,半导体激光光束质量的提高,由于其在效率方面的优势,大功率半导体激光技术得到迅速发展。采用连续输出60 W,转换效率达到 57%的880 nm大功率半导体激光 bar 条,组成20 层的半导体激光叠阵,输出功率达到 1183 W,通过快慢轴准直及光束整形提高激光器的光束质量,最终实现1 kW功率输出,电-光转换效率超过45.8%, 光束质量达到79.3 nm・mrad×81.2 nm・mrad。从而使半导体激光器可直接应用于熔覆、表面硬化等领域。 关键词 激光器;激光二极管;光束整形;高功率

中图分类号 TN248.4 文献标识码 A doi: 10.3788/CJL201138.0202010

Study on Beam Shaping of High Power Diode Lasers

Peng Hangyu^{1,2} Gu Yuanyuan^{1,2} Shan Xiaonan¹ Liu Yun¹ Hao Mingming^{1,2} Zhu Hongbo^{1,2} Yin Honghe¹ Tian Zhenhua^{1,2} Qin Li¹ Ning Yongqiang¹ Wang Lijun¹

¹ Key Laboratory of Excited State Physics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China ² Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract The major drawback of high power diode laser systems is their poor beam quality, which can be improved by beam shaping and beam combination. With the high wall-plug efficiency, high power laser diode developed rapidly. Base on bars rated to 60 W and 57% conversion efficiency, vertically stacked arrays (twenty bars) of such configuration are demonstrated with rated to 1183 W. The beam quality of high-power high brightness 880 nm laser diode source is improved with beam shaping. Beam parameter product of 79.3 mm • mrad × 81.2 mm • mrad, electro-optical conversion efficiency of more than 45.8% and continuous output power of 1 kW are demonstrated. This laser can be directly applied to cladding, surface hardening and other fields.

Key words lasers; laser diode; beam shaping; high power

OCIS codes 140.2010; 140.3300; 140.5960

1 引 言

近年来,在 SHEDS(Super High Efficiency Diode Sources), BRIOLAS (Brilliant Diode Lasers), WWW.BRIGHTER.EU(World Wide Welfare: high BRIGHTness semiconductor lasER for gEneric Use)等项目的支持下,大功率半导体激光的研究取 得了巨大的进步,拓宽了输出波长范围,增加了输出 功率,提高了转换效率。大功率半导体激光器的应 用主要有间接与直接应用,间接应用是用于抽运固 体激光器、光纤激光器;直接应用是通过光束整形技

收稿日期:2010-07-21; 收到修改稿日期:2010-10-11

作者简介:彭航宇(1983—),男,博士研究生,主要从事半导体激光光束整形等方面的研究。E-mail:imphy@163.com

导师简介:王立军(1946—),男,研究员,博士生导师,主要从事半导体激光及其应用技术等方面的研究。

E-mail:wanglj@ciomp.ac.cn

基金项目:中国科学院长春光学精密机械与物理研究所三期创新工程、吉林省与中国科学院院地合作项目 (2007SYHZ0030)、科技部国际合作项目(2006DFA12600)、吉林省科技厅省长基金(20075001)和中国科学院装备预先研究项目(61501060108)资助课题。

术,提高半导体激光光束质量,使之与闪光灯抽运的 固体激光相媲美;在半导体激光器的效率及寿命要 远高于闪光灯抽运的固体激光器的情况下,具有较 大的成本优势,能够代替闪光灯抽运的固体激光器 面向工业加工以及国防应用等领域。

在抽运固体激光器方面,由于抽运光光子与激射光光子之间的能量差(斯托克斯频移)大,在抽运固体激光器的过程中存在的量子亏损高,从而在激光晶体内部产生大量废热,产生较为严重的激光晶体热透镜效应,限制了激光器的输出特性,使激光抽运效率和光束质量均不能满足要求。与传统的808 nm半导体激光抽运 Nd:YVO4 晶体相比,880 nm半导体激光抽运 Nd:YVO4 晶体相比,880 nm半导体激光抽运 Nd:YVO4 激光晶体可以降低斯托克斯频移,减小量子亏损,降低热透镜效应从而使固体激光器获得大功率、高光束质量激光输出^[11]。

面向直接应用的半导体激光器需要光束整形, 光束整形的方法较多,主要分为两类,一是非相干耦 合,二是相干耦合。非相干耦合主要是采用几何耦 合的方法,不改变激光器本身的输出特性,对激光器 的输出光束进行整形,有折射整形法^[2]、反射整形 法^[3]以及折反射整形法^[4]等。相干耦合主要是衍射 整形法,如光谱合束^[5,6],需要改变激光器本身的输 出特性。目前国内在半导体激光器研究方面取得了 很大的进展[7~9],在光束整形方面北京工业大学研 制的单波长半导体激光器输出功率达到1 kW,但是 没有经过光束整形,慢轴方向光束质量较差[10];长春 理工大学实现1.2 kW半导体激光输出^[11];多波长耦 合的半导体激光器光束质量小于12 mm·mrad^[12]。 国外大功率半导体激光器的输出功率达到几千瓦, 最大输出功率可以达到万瓦量级。TRUMPF 公司 利用单管合束实现了3 kW的半导体激光输出,光束 质量达到30 mm • mrad^[13]; Limo 公司利用线阵合 束实现了1200 W的半导体激光输出,光束质量达到 22 mm • mrad^[14]; Laserline 公司利用叠阵合束实现 了5 kW 的半导体激光输出,光束质量达到 40 mm • mrad.

本文采用连续输出 60 W,转换效率达到 57% 的880 nm大功率半导体激光 bar 条,通过光束整形 技术改善了激光器慢轴方向的光束质量。

2 光束整形原理

半导体激光器在快慢轴方向光束质量相差很 大,以880 nm半导体激光器为例,激光器在快轴方 向的尺寸为1.5 μm, bar 条的宽度为1 cm, 腔长为 2 mm,每个半导体激光器 bar 上有19 个发光单元, 每个发光单元的尺寸为135 μm,发光单元之间的周 期为500 μm,相应的发散角为 45°×8°(90%能量)。 使用光参数积(*M*_{BPP})来衡量半导体光束质量的好 坏,光参数积定义为^[15]

$$M_{\rm BPP} = w_0 \times \theta_0 / 2, \qquad (1)$$

式中 w₀为光斑束腰半径, θ₀为远场发散角。参考文 献[16]可以由激光器快慢轴方向的尺寸及发散角 得出快慢轴方向的光束质量为

 $M_{\rm BPP_f} = 1.5 \times 10^{-3} \text{ mm}/2 \times 45 \times 17.5 \text{ mrad}/2 = 0.29 \text{ mm} \cdot \text{mrad},$ (2)

 $M_{\rm BPP} = 10 \, {\rm mm}/2 \times 9 \times 17.5 \, {\rm mrad}/2 =$

880 nm 激光器近衍射极限时的光束质量为

$$M_{\rm BPP\ d} = \lambda/\pi = 0.28\ {\rm mm} \cdot {\rm mrad}.$$
 (4)

快轴方向的光束质量较好,接近衍射极限,但是 发散角很大,不利于半导体激光器 bar 条在垂直方 向的堆叠,需要使用快轴准直镜对快轴发散角进行 压缩,降低快轴方向发散角;慢轴方向光束质量差, 需要慢轴准直镜对慢轴方向的光束进行准直,利用 bar 条的不发光区域,尽可能地减小慢轴方向发散 角。因此首先需要对激光器进行快慢轴准直,快轴 方向是利用有效焦距(EFL)为0.91 mm的快轴准直 镜对激光器进行准直,慢轴方向是利用周期与激光 器一致的 EFL 为2.2 mm的微透镜阵列对激光器进 行准直,利用软件模拟得到准直后的光束发散角如 图 1 所示,快轴方向发散角为2 mrad(90%能量),慢 轴方向发散角为54 mrad(90%能量),相应的光束质 量如表 1 所示。

表 1	准直前后 880)nm 半导体激光器的光束质量
-----	----------	-----------------

	Table 1	Beam	quality	of 8	380	nm	diode	laser	hefore	and	after	the	collimation
--	---------	------	---------	------	-----	----	-------	-------	--------	-----	-------	-----	-------------

	$2w_0/\mathrm{mm}$	θ_0 / mrad	$M_{ m BPP}/(m mm \cdot m mrad)$
Before collimated in fast axis	0.0015	785	0.29
After collimated in fast axis	0.7	2	0.35
Before collimated in slow axis	10	140	350
After collimated in slow axis	10	54	135

(6)

(7)

一个层数为 20 层的半导体激光叠阵 bar 与 bar 之间的间距约为1.9 mm,经过快慢轴准直之后的光 斑尺 寸 为 38 mm× 10 mm,发 散 角 为 2 mrad× 54 mrad,快、慢轴方向的光束质量为

 $M_{
m BPP_f} = 19 \
m mm imes 2 \
m mrad/2 = 19 \
m mm ullet mrad,$ (5) $M_{
m BPP s} = 5 \
m mm imes 54 \
m mrad/2 = 135 \
m mm ullet mrad.$

方向的发散角增加到8 mrad, $M_{\rm BPP_f:smile} = 19 \text{ mm} \times 8 \text{ mrad}/2 = 76 \text{ mm} \cdot \text{mrad}.$

快慢轴光束质量仍然相差较大,为了改善慢轴 方向的光束质量,需要对慢轴进行光束整形,以满足 快慢轴方向光束质量均衡。

如图 2 所示,根据折射定理,光以一定的角度 入射到玻璃介质后会发生折射,如果玻璃介质为平 行介质,则出射光与入射光是平行的,但会产生一定 量的平移量 d,由平行平板平移公式

 $d = L(1 - \cos \alpha / \sqrt{n^2 - \sin \alpha^2}) \sin \alpha \cos \alpha, \quad (8)$ 可得到平行平板玻璃的尺寸参数

$$d = L[1 - \cos(90^\circ - \beta) / \sqrt{n^2 - \sin(90^\circ - \beta)^2}] \times \sin(90^\circ - \beta)\cos(90^\circ - \beta), \qquad (9)$$

式中 L 为平行平板玻璃的长度, n 为平行平板玻璃 的折射率, β 为平行平板玻璃锐角角度, 与光束入射 角 α 的关系为

$$\beta = 90^{\circ} - \alpha. \tag{10}$$

半导体激光 bar 条在经过快慢轴准直后,单个 bar 条的快轴方向光斑尺寸只有0.7 mm,而 bar 条 与 bar 条的间距有1.9 mm,因而每个 bar 条出射的 光束之间存在1.2 mm的不发光区,利用这个不发光 区将光束先分割成 2 份,第一步实现光束在快轴方 向的平移,使两部分光束在快轴方向实现0.95 mm (1.9 mm/2)的错位,第二步实现光束在慢轴方向的

图 3 半导体激光叠阵光束整形原理图。(a) 整形前的光 束,(b) 经过快轴方向分割、平移后的光束,(c) 整 形后的光束

Fig. 3 Principle of the diode laser beam shaping.(a) beam before the shaping, (b) beam after fast axis shifting, (c) overall beam after shaping

平移,使两部分光束各自在慢轴方向实现2.5 mm的 平移,这样慢轴方向的光斑尺寸就减小一半,而发散 角没有发生变化,则慢轴方向的光束质量为

$$M_{\text{BPP}_{s1}} \approx M_{\text{BPP}_{s}}/N = 135 \text{ mm} \cdot \text{mrad}/2 =$$

67.5 mm \cdot mrad, (11)

原理图如图3所示。

从图 3 可以得到,光束整形前后,快轴方向的光束质量没有发生变化,而慢轴方向的光束质量为原来的一半,光束整形完成后的光束质量为57 mm・mrad×67.5 mm・mrad。

用于实现半导体激光叠阵光束整形的平行平板 玻璃如图 4 所示,通过两组平板玻璃堆分别实现对 快轴方向及慢轴方向光束的平移。

图 4 平行平板玻璃图片 Fig. 4 Photo of the parallel glass plate

3 实验结果

实验中采用波长为 880 nm 的半导体激光器 bar 条,其输出波长如图 5 所示,中心波长 λ 为 879.8 nm,光谱宽度 $\Delta\lambda$ 为 2.6 nm (半峰全宽, FWHM),实验采用 20 个输出功率为60 W的 bar 条 组成的激光叠阵,单个 bar 条的 *P-I* 曲线如图 6 所 示,在注入电流65 A时,工作电压为1.62 V,输出功 率达到60.3 W,斜率效率为1.09 W/A,相应的电-

光转换效率为57.2%。

将 20 个 bar 条在垂直方向叠加,得到一个 20 层的半导体激光叠阵,由于出射光束的面积较 大,需要采用探测面积较大的激光功率计,在此采用 的是 OPHIR 公司的5000 W激光功率计,同时使用 万用表测量激光叠阵两端的电压,计算叠阵的电-光 转换效率。如图 7 所示,在注入电流65 A时,工作 电压为32.42 V,输出功率达到1183.7 W,斜率效率 为21.53 W/A,相应的电-光转换效率为56.2%。

图 7 水温 25 ℃,水流量 8 L/min 时,20 层叠阵的 P-I 及 E-I 特性曲线

Fig. 7 Output power and efficiency versus operating current of the stack at 25 °C water temperature and 8 L/min water flow rate

相对于在叠阵组装之前对每个 bar 条做快慢轴 准直,叠阵组装完后对每个 bar 条做快慢轴准直,有 利于减小 bar 条出射光束的指向误差及叠阵组装过 程产生的热沉形变,采用快慢轴准直镜对叠阵中的 每个 bar 条分别准直,准直后叠阵快轴方向的发散 角为8 mrad,慢轴方向的发散角为64 mrad,测量得 到的值都要大于表1所示的理论计算值。分析原因 快轴方向的发散角增加一方面是由于 bar 条封装时 的 smile 效应造成的,另一方面是由于快轴准直镜 需要的调整精度很高(达到亚微米级),在实际装调 过程中很难做到精确定位造成的,使快轴方向的发 散角由2 mrad增加到8 mrad。慢轴方向的发散角增 加主要是由于各个 bar 条准直光束之间的指向误差 造成的,使慢轴方向的发散角由54 mrad增加到 64 mrad。经过快慢轴准直后,如图7 所示在注入电 流65 A时,输出功率达到1062 W,电-光转换效率为 50.3%,相应的光束质量变为

 $M_{
m BPP_f} = 19 \,\,
m mm imes 8 \,\,
m mrad/2 = 78 \,\,
m mm \, ullet \,\,
m mrad,$ (12) $M_{
m BPP_s} = 5 \,\,
m mm imes 64 \,\,
m mrad/2 = 160 \,\,
m mm \, ullet \,\,
m mrad.$

(13)

将经过快慢轴准直的光束经过光束整形可以实 现如图 7 所示在注入电流67 A时,输出功率达到 1001.5 W,电-光转换效率为45.8%。将整形之后的 光束通过有效焦距约200 mm的聚焦镜聚焦之后,得 到一个聚焦光斑,通过测量光轴上不同位置的光斑 大小,可以计算得到相应的发散角,如图 8 所示,得 到相应的快慢轴方向的光束质量。快轴方向的光束

图 8 光束整形后的光束质量

Fig. 8 Beam quality of the stack after beam shaping

图 9 聚焦后获得的光斑轮廓图 Fig. 9 Profile of spot size after focus lens

质量为79.3 mm • mrad, 慢轴方向的光束质量为 81.2 mm • mrad。可以看出快轴方向的光束质量在 光束整形过程中基本没有发生变化, 与(12)式基本 一致, 慢轴方向的光束质量在光束整形后中大约只 有原来的一半, 大概是(13) 式的一半。通过 Matlab 处理后在束腰位置得到相应的光斑轮廓如图 9 所 示, 光斑接近于平顶光束1.35 mm (快轴方向) × 1.45 mm (慢轴方向)。整个模块如图 10 所示。

图 10 1000 W 880 nm 半导体激光光源 Fig. 10 880 nm laser diode source module

4 结 论

研制出 20 层 880 nm 半导体激光叠阵,通过快 慢轴准直以及光束整形,实现千瓦级激光输出,电-光转换效率达到 45.8%,光束质量达到 79.3 mm•mrad×81.2 mm•mrad,在数值孔径为 0.2时,可以实现小于1 mm×1 mm的光斑输出,可 满足半导体激光器直接应用于熔覆、表面硬化等领 域。还将通过偏振耦合技术提高输出功率,最终提 高激光功率密度,进一步拓展应用领域。

参考文献

- Wang Xiangpeng, Liang Xuemei, Li Zaijin *et al.*. 880 nm semiconductor laser diode arrays and fiber coupling module [J]. *Optics and Precision Engineering*, 2010, 18(5):1021~1027 王祥鹏,梁雪梅,李再金等. 880 nm 半导体激光器列阵及光纤耦 合模块[J]. 光学精密工程, 2010, 18(5):1021~1027
- 2 Grenier Paul, Taillon Yves, Labranche Bruno *et al.*. Symmetrization device and laser diode system provided with the same [P]. U S Patent, 7260131, 2007-08-01
- 3 Spaeth Werner, Groetsch Stefan, Moser Ralf et al.. Microoptical device with mirrors [P]. U S Patent, 5808323, 1998-09-15
- 4 Gao Xin, Shinoda Kazunori, Saitoh Masayuki *et al.*. Laser light source and an optical system for shaping light from a laser-barstack [P]. U S Patent, 6943957, 2005-09-13
- 5 B. Chann, R. K. Huang, L. J. Missaggia *et al.*. Neardiffraction-limited diode laser arrays by wavelength beam combining [J]. *Opt. Lett.*, 2005, **30**(16):2104~2106
- 6 Li Yuandong, Hua Weihong, Wang Hongyan et al.. Research development of linewidth narrowing of high power diode lasers [J]. Laser & Optoelectronics Progress, 2010, 47(9):091405

李元栋,华卫红,王红岩等. 谱宽压窄大功率半导体激光器研究 进展[J]. 激光与光电子学进展, 2010, **47**(9):091405

7 Hu Liming, Li Zaijin, Qin Li *et al.*. Thermal analysis of high-power, high-duty-cycle laser diode array [J]. Acta Optica Sinica, 2010, 30(4):1055~1060

胡黎明,李再金,秦 莉等.高占空比大功率半导体激光线阵热 特性分析[J].光学学报,2010,**30**(4):1055~1060

- 8 Wang Zhiqun, Yao Shun, Cui Bifeng et al.. Thermal characteristic of high beam quality laser diode array [J]. Chinese J. Lasers, 2010, 37(10):2497~2501 王智群,尧 舜,崔碧峰等.高光束质量大功率半导体激光阵列 的热特性[J]. 中国激光, 2010, 37(10):2497~2501
- 9 Wang Jingwei, Yuan Zhenbang, Zhang Yanxin *et al.*. Study of the mechanisms of spectral broadening in high power semiconductor laser arrays [J]. *Chinese J. Lasers*, 2010, **37**(1): 92~99

王警卫,袁振邦,张彦鑫等.大功率半导体激光器阵列光谱展宽 机理研究[J].中国激光,2010,**37**(1):92~99

10 Ding Peng, Cao Yinhua, Su Guoqiang *et al.*. 1 kW high power diode laser with polarization coupled by Gran-Tylor prism [J]. *Chinese J. Lasers*, 2009, **36**(2):290~293
丁 鹏,曹银花,苏国强等. 使用格兰-泰勒棱镜偏振耦合的

J 酮, 曾银花, 办国强 寺. 使用格三-泰朝後镜调振稿音的 1 kW大功率半导体激光器[J]. 中国激光, 2009, 36(2): 290~293

11 Zhigang Liu, Gaozhan Fang, Kecheng Feng. High packing

density laser diode stack arrays using Al-free active region laser bars with a broad waveguide and discrete copper microchannelcooled heatsinks [J]. *Chin. Opt. Lett.*, 2009, 7(3):214 \sim 216

- 12 Cao Yinhua, Liu Youqiang, Qin Wenbin *et al.*. Kilowatt diode laser with beam quality better than all-solid-state laser [J]. *Chinese J. Lasers*, 2009, 36(9):2282~2285
 曹银花,刘友强,秦文斌等. 光束质量超过全固态激光器的千瓦 直接半导体激光器[J]. 中国激光, 2009, 36(9):2282~2285
- 13 David Havrilla, Marco Holzer, Rüdiger Brockmann et al.. Dramatic advances in direct diode lasers [C]. SPIE, 2010, 7583: 75830B
- 14 Andre Timmermann, Daniel Bartoschewski, Stephan Schlüter et al.. Intensity increasing up to 4 MW/cm² with BALB's via wavelengths coupling [C]. SPIE, 2009, 7198:71980X
- 15 ISO/DIS-Standard 11146, International Organization for Standardization
- 16 Friedrich Bachmann, Peter Loosen, Reinhart Poprawe. High Power Diode Lasers: Technology and Applications [M]. New York: Springer, 2007. 153
- 17 Deng Xinli, Liu Yun, Yin Honghe *et al.*. Theoretical analysis and experiment of "smile" correction for diode laser bar [J]. *Chinese J. Lasers*, 2008, **35**(4):505~508
 邓鑫李,刘 云,尹红贺等.半导体激光线阵弯曲矫正方法的理论分析与实验[J]. 中国激光, 2008, **35**(4):505~508